阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 下面的程序利用快

  • 发布时间:
  • 浏览:128
  • 来源:大数据
阅读以下说明和代码,填补代码中的空缺,将解答填入答题纸的对应栏内。 【说明】 下面的程序利用快速排序中划分的思想在整数序列中找出第k小的元素(即将元素从小到大排序后,取第k个元素)。 对一个整数序列进行快速排序的方法是:在待排序的整数序列中取第一个数作为基准值,然后根据基准值进行划分,从而将待排序的序列划分为不大于基准值者(称为左子序列)和大于基准值者(称为右子序列),然后再对左子序列和右子序列分别进行快速排序,最终得到非递减的有序序列。 例如,整数序列“19, 12, 30, 11,7,53, 78, 25"的第3小元素为12。整数序列“19,12,7,30,11,11,7,53,78,25,7"的第3小元素为7。 函数partition(int a[ ], int low,int high)以a[low]的值为基准,对a[low]、a[low+1]、…、 a[high]进行划分,最后将该基准值放入a[i] (low≤i≤high),并使得a[low]、a[low+1]、,..、 A[i-1]都小于或等于a[i],而a[i+1]、a[i+2]、..、a[high]都大于a[i]。 函教findkthElem(int a[],int startIdx,int endIdx,inr k)在a[startIdx]、a[startIdx+1]、...、a[endIdx]中找出第k小的元素。 【代码】 include <stdio.h> include <stdlib.h> Int partition(int a [ ],int low, int high) {//对 a[low..high]进行划分,使得a[low..i]中的元素都不大于a[i+1..high]中的元素。 int pivot=a[low]; //pivot表示基准元素 Int i=low,j=high; while((1) ){ While(i<j&&a[j]>pivot)--j; a[i]=a[j] While(i<j&&a[i]<=pivot)++i; a[j]=a[i] } (2) ; //基准元素定位 return i; } Int findkthElem(int a[ ],int startIdx,int endIdx, int k) {//整数序列存储在a[startldx..endldx]中,查找并返回第k小的元素。 if (startldx<0 ||endIdx<0 || startIdx>endIdx || k<1 ||k-1>endIdx ||k-1<startIdx) Return-1; //参数错误 if(startIdx<endldx){ int loc=partition(a, startIdx, endldx); ∥进行划分,确定基准元素的位置 if (loc==k-1) ∥找到第k小的元素 return (3) ; if(k-1 <loc) //继续在基准元素之前查找 return findkthElem(a, (4) ,k); else //继续在基准元素之后查找 return findkthElem(a, (5) ,k); } return a[startIdx]; } int main() { int i, k; int n; int a[] = {19, 12, 7, 30, 11, 11, 7, 53, 78, 25, 7}; n= sizeof(a)/sizeof(int) //计算序列中的元素个数 for (k=1;k<n+1;k++){ for(i=0;i<n;i++){ printf(“%d/t”,a[i]); } printf(“ ”); printf(“elem %d=%d ,k,findkthElem(a,0,n-1,k));//输出序列中第k小的元素 } return 0; } 请帮忙给出正确答案和分析,谢谢!
答案

验证码: 验证码:  

答案: 输入验证码查询

解析